Raft foundation
Contents |
[edit] What are foundations?
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics.
Very broadly, foundations can be categorised as shallow foundations or deep foundations. Shallow foundations are typically used where the loads imposed by a structure are low relative to the bearing capacity of the surface soils.
Deep foundations are necessary where the bearing capacity of the surface soils is not adequate to support the loads imposed by a structure and so those loads need to be transferred to deeper layers with higher bearing capacity.
Shallow foundations include:
- Strip foundations (or footings).
- Pad foundations.
- Raft foundation.
[edit] What are raft foundations?
Raft foundations (sometimes referred to as raft footings or mat foundations) are formed by reinforced concrete slabs of a uniform thickness (typically 150 mm to 300 mm) that cover a wide area, often the entire footprint of a building. They spread the load imposed by a number of columns or walls over the area of foundation, and can be considered to ‘float’ on the ground as a raft floats on water.
[edit] Where are raft foundations appropriate?
They are suitable where:
- Floor areas are small and structural loadings are low, such as in one or two-storey domestic buildings.
- A basement is required.
- Ground conditions are poor and strip or pad foundations would require significant excavation, for example on soft clay, alluvial deposits, compressible fill, and so on.
- Settlement, or differential settlement is likely.
- Where it may be impractical to create separate strip or pad foundations for a large number of individual loads. In very general terms, if strip or pad foundations would cover 50% or more of the floor area, then a raft may be more appropriate.
Raft foundations can be fast and inexpensive to construct, as they tend not to require deep excavations compared to strip or pad foundations and they may use less material as they combine the foundation with the ground slab. However, they tend to be less effective where structural loads are focussed on a few concentrated areas, and they can be prone to erosion at their edges.
[edit] How are raft foundations constructed?
The design of raft foundations involves a number of disciplines, as consideration must be given not only to the structure itself, but also to; integration of other constructions (such as external walls), insulation, damp proofing and complex ground conditions such as the presence of groundwater, trees or contamination.
Raft foundations are generally constructed on a compacted hardcore base (perhaps 100 mm thick). A layer of blinding concrete (typically 50 mm) may then be laid with a waterproof membrane above to create an even, dry surface to allow formation of the raft .
The concrete raft tends to include steel reinforcement to prevent cracking, and may incorporate stiffening beams or thickened areas to provide additional support for specific loads, for example, below internal walls or columns (which may require punching shear reinforcement). Beams may stand proud of the raft, either above or below it, or may be 'hidden' beams, formed by reinforced areas within the depth of the raft itself. These thickened areas are particularly useful where there are poor ground conditions, as the required thickness of the raft itself might otherwise be uneconomic.
Typically, a thickened reinforced area is created at the perimeter of the raft to form an edge beam supporting the external walls of the building. A concrete toe often supports the external leaf of the wall.
Insulation will generally be laid on top of the raft, with a concrete floor, or raised floor above.
Drainage may be required under raft foundations in some circumstances, and geotextile barriers may be required to prevent free-draining materials from becoming clogged up by the surrounding soil.
[edit] What are the different types of raft foundation?
Types of raft foundation include:
- Solid slab raft, sometimes referred to as a plain raft, and including; flat rafts, mats, wide toe rafts, slip plane rafts, blanket rafts, and so on.
- Slab beam raft.
- Cellular raft.
- Piled raft.
For more information, see Types of raft foundation.
Where soil is compressible, a raft foundation may be formed as a compensated foundation. In this case, the raft slab is provided to a depth that the weight of the excavated soil is equal to the raft slab weight plus that of the structure to be supported. This can be appropriate when constructing buildings on soft clay or loose sand, as settlement can be significantly reduced.
For more information see: Compensated foundation.
[edit] Related articles on Designing Buildings
Featured articles and news
Designing for neurodiversity: driving change for the better
Accessible inclusive design translated into reality.
RIBA detailed response to Grenfell Inquiry Phase 2 report
Briefing notes following its initial 4 September response.
Approved Document B: Fire Safety from March
Current and future changes with historical documentation.
A New Year, a new look for BSRIA
As phase 1 of the BSRIA Living Laboratory is completed.
A must-attend event for the architecture industry.
Caroline Gumble to step down as CIOB CEO in 2025
After transformative tenure take on a leadership role within the engineering sector.
RIDDOR and the provisional statistics for 2023 / 2024
Work related deaths; over 50 percent from constructuon and 50 percent recorded as fall from height.
Solar PV company fined for health and safety failure
Work at height not properly planned and failure to take suitable steps to prevent a fall.
The term value when assessing the viability of developments
Consultation on the compulsory purchase process, compensation reforms and potential removal of hope value.
Trees are part of the history of how places have developed.
The increasing costs of repair and remediation
Highlighted by regulator of social housing, as acceleration plan continues.
Free topic guide on mould in buildings
The new TG 26/2024 published by BSRIA.
Greater control for LAs over private rental selective licensing
A brief explanation of changes with the NRLA response.
Practice costs for architectural technologists
Salary standards and working out what you’re worth.
The Health and Safety Executive at 50
And over 200 years of Operational Safety and Health.
Thermal imaging surveys a brief intro
Thermal Imaging of Buildings; a pocket guide BG 72/2017.
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.